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Abstract 

Federated Learning (FL) has emerged as a promising approach for decentralized and privacy-

preserving anomaly detection across distributed systems, particularly in large-scale networks. The 

integration of FL for scalable and efficient anomaly detection, addressing key challenges such as 

network and communication constraints, edge device limitations, and the scalability of machine 

learning models. Emphasis is placed on optimizing model aggregation strategies, reducing 

communication overhead, and leveraging local training to enhance performance. The chapter 

explores advanced techniques like asynchronous updates, model compression, and hierarchical 

aggregation to overcome data synchronization issues. Additionally, it discusses dynamic 

federation strategies that adapt to system load and the importance of data management for 

improved scalability. By addressing these critical aspects, the chapter provides a comprehensive 

framework for implementing FL-based anomaly detection in real-world, resource-constrained 

environments. The combination of innovative methodologies and practical insights presented here 

paves the way for deploying FL in diverse applications, ranging from IoT systems to large-scale 

industrial networks, ensuring robust and efficient anomaly detection without compromising 

security or scalability.  
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Introduction 

Federated Learning (FL) has gained significant attention in recent years due to its ability to 

enable decentralized machine learning across distributed systems [1]. In traditional machine 

learning paradigms, data is collected and stored in a centralized location before training models 

[2]. With the advent of technologies such as IoT, edge computing, and industrial sensor networks, 

data is often distributed across numerous devices [3]. This creates challenges in terms of data 

privacy and security, particularly when dealing with sensitive or proprietary information [4]. FL 

addresses these challenges by allowing models to be trained collaboratively across edge devices 

without the need to share raw data [5]. This is particularly useful in applications like anomaly 

detection, where timely identification of outliers or system failures is critical to maintaining the 

integrity of large-scale systems [6]. 
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Anomaly detection is a crucial task across various domains, including cybersecurity, industrial 

systems, healthcare, and finance [7]. Detecting deviations from normal behavior can help identify 

potential threats, faults, or inefficiencies [8]. In traditional anomaly detection methods, data from 

different sources is collected and centralized, which may expose the system to privacy risks and 

increased latency [9]. Federated Learning offers a decentralized approach to anomaly detection, 

ensuring that sensitive data remains on local devices while models are updated collaboratively 

[10]. As the number of devices in these systems grows, significant challenges arise, such as 

computational constraints, communication overhead, and difficulties in model synchronization 

[11]. These factors need to be carefully managed to ensure that FL-based anomaly detection 

remains effective and scalable in large-scale systems [12]. 

One of the primary challenges in deploying Federated Learning for anomaly detection is the 

scalability of the system [13]. As the number of participating devices increases, so does the 

complexity of model training and aggregation [14]. In a typical FL setup, each device trains a local 

model using its own data, and periodically, these local models are aggregated to form a global 

model [15]. As more devices join the system, the communication costs associated with sharing 

model updates become substantial [16]. Large datasets and complex models can strain the 

computational resources of edge devices, leading to delays in training and inference [17]. To 

overcome these challenges, techniques such as model compression, pruning, and federated 

optimization algorithms have been proposed to enhance the scalability of FL systems for anomaly 

detection [18]. These methods aim to reduce the size of the models, optimize the training process, 

and minimize the amount of data exchanged between devices and central servers. 

In addition to scalability, communication efficiency is another critical concern when 

implementing FL-based anomaly detection systems. In large-scale systems, the frequent exchange 

of model parameters between edge devices and central servers can create significant network 

traffic, especially in resource-constrained environments where bandwidth may be limited [19]. To 

address this, several communication-efficient strategies have been developed, such as 

sparsification and gradient quantization. These methods aim to reduce the size of the data 

transmitted, which can significantly decrease communication costs [20]. Additionally, techniques 

like local training and data aggregation can help minimize the frequency of communication, 

enabling edge devices to perform multiple training iterations locally before synchronizing with the 

global model. By improving communication efficiency, FL systems can become more viable for 

deployment in large-scale, distributed anomaly detection applications, where latency and 

bandwidth limitations are crucial factors [21]. 

Edge devices involved in FL-based anomaly detection systems are often limited by 

computational and storage resources, which can hinder the training of complex machine learning 

models [23]. These devices are typically constrained by factors such as processing power, memory, 

and battery life, which can limit their ability to handle large datasets or run resource-intensive 

models [24]. To overcome these challenges, it is essential to design lightweight models that can 

operate efficiently on edge devices while maintaining high detection performance. Techniques like 

model distillation, transfer learning, and incremental learning can be employed to reduce the 

computational load on edge devices without sacrificing the accuracy of the anomaly detection 

process. The use of hybrid architectures that offload more computationally expensive tasks to 

cloud servers or powerful local machines can help ensure that edge devices can contribute 

effectively to the anomaly detection process without being overburdened [25]. 



 


